
 Vol. 04, No. 01 ,(2020), 001–011 , ISSN:2581-3242

International Journal of Machine Learning and Networked

Collaborative Engineering

Journal Homepage: http://www.mlnce.net/home/index.html

DOI : https://doi.org/10.30991/IJMLNCE.2020v04i01.001

1

Keywords

Distributed crawler

Web crawler

Bandwidth

Efficient Distributed Web Crawler Using Hefty and Enhanced
Bandwidth Algorithms for Drug Website Search

a
Ramachandran,

b
R. Arunpraksh,

c
Aghila Rajagopal,

d
Manju Khari

aAssistant Professor, Department of CSE, University College of Engineering, Panruti*, ramautpc@gmail.com

bAssistant Professor, Department of CSE, University College of Engineering, Ariyalur,

arunitvijay2014@gmai.com

cAssociate Professor, Department of IT, Sethu Institute of Technology, Kariapatti.aghila25481@gmail.com

dAssistant Professor, Ambedkar Institute of Advanced Communication Technologies and

Research,manjukhari@gmail.com,

ORCID:0000-0001-5395-5335

Abstract

refabricate a proficient search structure is very important due to the current

scale of the web. Search engines mine information from the web and a

program called a web crawler, which efficiently surfs the web. A

distributed crawler belongs to a variant of a web crawler, uses a dispersed

computation method. In this paper, we design and implement the concept of

Efficient Distributed Web Crawler using enhanced bandwidth and hefty

algorithms. Mostly Web Crawler doesn't have any distributed cluster performance

system and any implemented algorithm. In this paper, a novel Hefty Algorithm

and enhanced bandwidth algorithm are combined for a better-distributed crawling system. The hefty

algorithm was implemented to provide efficient and robust surfing results while applying on the drug web

search. We also implemented the Enhanced Bandwidth algorithm to improve the efficiency of the proposed

crawler.

1. Introduction

A web crawler is a meta-search engine, which combines the top search results from the represented

search engines. The search of users may also involve the audio, video, news, and more. A web crawler is a

program or script, also called a web spider or web bot crawls the web automatically. A lot of trustworthy

sites, particularly search engines, use the spider process to provide a summary of website content. The

website content includes the Uniform Resource Locator (URL) and the text-based summary. The Web

Crawlers generate a list of URLs of pages that provide information for later search, leads to the reduction of

time and resources. Maintenance tasks such as checking links and validation of HTML codes are carried out

by these web crawlers. Harvesting of e-mail addresses from web pages is done through this crawler.

The algorithm for the first web crawler, World Wide Wanderer, was designed in 1993, has not been

updated since. Almost all crawlers go along with some modifications to the basic web-traversal algorithm. A

Crawler is a massive search engine with the following issues. First, it should have an excellent crawling

technique, i.e., which file should be downloaded next. Second, it must have a robust architecture, able to

handle downloading of a large number of pages per second in spite of crashes, considerate and manageable

P

International Journal of Machine Learning and Networked Collaborative Engineering, ISSN: 2581-3242

2

resources in web servers. Web crawlers also take into account scalability because of the growing size of the

World Wide Web. The acceleration of traversing web can be limited by factors such as latency and

bandwidth of the networks. Determining the modification of a web page, will helps to minimize the level of

unwanted polling done by a crawler. The polling will exploit a minimal amount of resources, the more that

can be spared to the task of locating new information. Finally, crawlers depend upon one another by

communicating with each other and being occurrences of themselves (in the parallel sense). This ascends the

need for unconventionally cooperative sharing web crawlers. When there is a need, crawlers make decisions

and communicate with each other.

Distributed web crawling is a distributed computing technique on the web where many crawlers are

working to scatter the web crawling process, which establishes the maximum exposure to the web. A median

proxy manages the exchanging information and synchronization of the nodes, as it is geographically

scattered as the World Wide Web. The page rank algorithm is generally used to raise the efficiency and

quality search from the web. This Page ranking for a web sometimes has a low rank, i.e., 2 or 3 or sometimes

0. The high-ranking page will have enormous traffic, and the overall performance is not good enough. And

also, the surfing results occur only at the time of indexing and not at the query time. In the distributed

fashion of web crawlers, multiple crawlers receive individual URL from a URL server. These crawlers then

start downloading the web pages simultaneously. The central indexer receives the downloaded pages from

the crawlers, on which links are mined and sent through the URL server to the crawlers. Implementation of

web crawlers in a distributed fashion using a cluster system is a difficult task because of its enormous

resource usage.

Apart from the page rank algorithm, numerous distributed crawling algorithms crawl for the web

pages from the web server in parallel in a coordinated fashion. The coordination technique improves

efficiency by avoiding repeated crawling on similar documents. Without coordination, the crawler will

individually explore its queue without considering the other crawler's queue since this crawling without

coordination will not be infrequent. So, the crawling algorithm should have the coordination techniques

supported by link analysis metrics, which are strong enough due to the initial seed documents, i.e., the cluster

of records are fetched from unlike seeds are mostly overlapping. Without coordination, this robustness leads

to the parallelization effect of crawling the same documents.

The section I involves the system architecture; section II includes the proposed model of the system,

section III consists of the performance analysis.

2. Related Work

In paper [15], Web crawling uses the map-reduce programming paradigm and some features of cloud

computing. The crawler crawls the web by using disseminated agents, and each agent stores its discovery on

a Cloud Azure Table. But it takes more time to access the unstructured data. In another paper, the Topic

Sensitive Page Ranking algorithm [16] has been used; the search process is carried out in context by

highlighting the words on a web page. At query time, these importance scores are combined together based

on the subject of the query to form an integrated PageRank score for those pages matching the query. This

uses three methodologies for scoring the pages they are query sensitive scoring, Query Time Importance

Score, and topic sensitive scoring.

In paper [11], commonly used link analysis algorithm such as page rank, weighted page rank, and

HITS (Hyperlink induced topic search) was discussed. The drawback of the page rank algorithm is query

independent, and results are sorted according to the importance of pages. The weighted page rank algorithm

is also query independent and consumes more indexing time. The HITS have the topic drift and efficiency

problem. In paper [12], propose a method to evaluate the relevance of a page to a searched query-based not

only on the information contained in its textual content but also by finding the relevance of the linked pages

to the current page w.r.t. to the given searched criteria. The proposed algorithm represents every page by a

vector of terms using the Vector Space Model technique (VSM). The relevance of each time is estimated by

the Vector Space Model technique utilizing the support of occurrence information, which assigns weights for

every term in a document and represents the documents as term frequency weight vectors. This is a time

consuming process to generate the weights of the documents.

In paper [13], from the inferred similarity graph visually, "authority" nodes were identified by the

http://www.wordhippo.com/what-is/another-word-for/scattered.html

Efficient Distributed Web Crawler Using Hefty and Enhanced Bandwidth Algorithms for Drug Website Search

 3

tasks of image ranking algorithms and proposed Visual Rank to analyze the visual link structures among

images. The images identified as "authorities" are selected to answer the image queries well. Our

experimental reveals show significant improvement, for user satisfaction and relevancy, in comparison to

recent Google Image Search results. Maintaining modest computational cost is vital to ensuring that this

procedure can be used in practice; however, this requires more resource space to find the large-scale

computing process.

In paper [17], Jaytrilok Choudhary proposed the priority-based semantic web crawler. The semantic

score is determined for the given URL, which is obtained from the web page. The semantic score is intended

from the anchor text of the unvisited URL. By using the semantic score of the pages, the web pages are

getting prioritized. Topic ontology can also be used to determine the semantic score. The scoring is only

focused on the semantic, not on the similarity of the content of the web page and also not having the

experimental outcomes. In paper 19, a parallel migrating crawler is dividing the crawling work to various

independent and similar crawlers, which moves to multiple machines to improve network efficiency and

reduce the time for downloading. Experiments and results of proposed migrating and nature of the parallel

working of the design were recorded. It has the central database communicates with the search engine. The

central database stores the URLs received from the application, and it also stores the final downloaded

documents which are retrieved by various crawlers since this uses the identical old mapper system to map

the request and response between the search engine and the crawler.

In paper [7], Vladislav Shkapenyuk et al., the high-performance distributed web crawler by using the

crawler application. The crawling application adopts what page to demand next given the current state and

the formerly crawled pages, and issues a stream of requests (URLs) to the crawling system. The crawling

system copies the requested pages and passes them to the crawling application for investigation and storage.

The crawling system is responsible for tasks such as robot barring, speed control, and DNS resolution that

are common to most scenarios, while the application implements crawling strategies such as breadth-first or

focused. The crawling application replicates itself while there is a need for large web pages leads to poor

scalability.

3. Existing Work

From the related work, we have identified a few problems in the distributed web crawling.

 In web crawling, network traffic is a big issue while fetching a vast amount of web pages.

 Load balancing is the main issue, while fetching a vast amount of web pages. However, there are

many proposed algorithms to improve scalability, crawling speed, URL prioritization. Only some of

them have been implemented.

 Bandwidth utilization is a critical issue for distributed crawling.

 So far, deep websites are utilized to search for drug details. Alphabay, Valhalla, Hansa, Zocalo

Marketplace are the currently available deep websites.

4. Design Objectives

 Selecting URL and Content: A web crawling is desirable to have some mechanism to rank

URL/domains to provide good seed and content selection.

 Freshness: Some websites are to be frequently updated leads to updating in the crawling content

also. It should maintain a strategy to identify the schedule for every link to be downloaded.

 Deep Crawling: Crawling till to the lower level of the web, to identify the unvisited websites and

list out those in the URL list.

 Focussed Crawling: It is the estimation of the unvisited websites that are near similar to the

content before downloading the web page. So, there is a periodical update of the whitelist.

 Challengers: Every web crawler will face some irrelevant processes such as crawling traps, spam

sites, cloaked content. The crawling trap is the collectives web site that creates uncountable sets of

URLs for the crawler to find. The spam sites are malicious web sites that exploit user's resources

International Journal of Machine Learning and Networked Collaborative Engineering, ISSN: 2581-3242

4

and bandwidth. Cloaked content is to serving a web page for search engines and providing entirely

different ones to the user.

 Politeness: The site operator bans the misbehaving crawlers. To avoid this condition, tracing the

robots.txt on every site to follow their terms and condition.

5. Architecture

Figure 1: The System Architecture

The main segments in the architecture are the Crawler engine, Module, Envoy, server, and repository.

The crawler engine has an automated script to mine the web, where it simultaneously uses several search

engines for searching the web (such as google, yahoo, bing). The crawler engine searches the web to collect

clusters of URLs typically denoted as seed URL documents. Additionally, the crawlers validate the HTML

code, hyperlinks, and web scraping. At starting, the keyword is entered into the web crawler engine, and it

sends the request to the webserver. The web server is the computer system that serves the user request.

The envoy is a crawling agent that consists of the following phases, such as fetcher, Scrutinizer, and

Eliminator. The fetcher fetches the URL from the web server with the most related terms. The Scrutinizer

scrutinizes the URL and then content to give priority in the more relevance URL to the keyword. The

eliminator will remove the visited URL request from the list and replace it with the unvisited URL. Then the

URL list is extracted and denoted as the modules and displayed in the crawling web engine. The repository

saves the URL lists that are crawled from the webserver.

6. Proposed Model

In our design, the hefty algorithm and bandwidth algorithm are combined to give an efficient crawling

strategy. Initially, the user mentions the keyword in the crawler engine; the list of URLs is extracted from the

webserver. The collected URL is partitioned into separate sets, here noted as URL modules. Each URL

module is handled by a different web crawler. Each Web Crawler parses and logs into the URL that is

present inside the module of it, and the remaining URL is sent to the corresponding module. Each crawler

has prior knowledge of the search table relating to the URL modules (maps IP address) by identifying the

crawler threads.

The first URL in the module is surfed, and then the next URL will be in the queue for the next visit.

Efficient Distributed Web Crawler Using Hefty and Enhanced Bandwidth Algorithms for Drug Website Search

 5

Here the envoy is an agent where the modules have been processed. The identified URL has been analyzed

by comparing it with the other URL in the module. If the same visited URL is found, then the URL has been

eliminated from the module. A new unvisited URL will be added to the module. After the URL has been

surfed the content inside in it was scrutinized. If it has similar content (which is already surfed), then that

URL has also been replaced with a new one.

The crawler is composed of a collection of fetchers, present inside the envoy. Each element is run as a

distinct thread, and the pool of fetcher threads are shaped upon startup. A fetcher pauses until the envoy

triggers it for salvaging a given URL. Then it makes an HTTP request to the suitable Web server and, after

having moved the document, it yields to a wait state. Fetchers are fed to implement the control policy for the

crawlers. The manager selects the URLs to be recovered during their primacies, and it activates the optimum

number of fetchers to deed the assigned bandwidth. The duplicate detector is used to identify the duplicate

URL or similar URL to avoid the excessive usage of memory for the repository. This will improve search

engine quality.

Distributed Crawling-Hefty Algorithm (DC-HA):

The distributed crawling algorithm is categorized into three stages, such as the starting stage,

formation stage, and relocation stage. In the starting stage, the keyword is entered, which extracts a seed set

of documents for various crawlers. In the formation stage, the different URLs are organized by using their

priority. The similar URL and the visited URL are identified to filter out. The estimation of all related

information is used to find which documents to fetch next. This process carried out while retrieving the

current document itself—an interaction between crawlers in order to exchange already analyzed documents

called the relocation stage.

The duplication in the URL can be easily identified because it will be completely identical, whereas

the near duplicate has some structural difference. Few structural changes are date change, small edits,

metadata, and other changes. The similarity score estimates the close duplication. The resemblance between

the URL is computed to identify the near-duplicates between the web pages. The similarity score counts the

similarity degree between the web pages. The higher computation score indicates a higher percentage of

similarity. So, the higher computation value suggests the web page have more near duplicates. The

computation value estimates all the similar pages whose similarities are above the given threshold. The

similarity value is between the two webpages is calculated as follows:

The keywords for the web pages and the counts of the keywords are represented as

P1={(K1,C1),(K2,C2),(K3,C3),……,(Kn,Cn)}

P2={(K1,C1),(K2,C2),(K3,C3),……,(Kn,Cn)}

At first, the similarity between the web pages is measured by using the keyword for the first web page

P1. This is calculated by obtaining the difference between the number of occurrences of both the keywords. If

the keyword is not on the web page means then the computation value is zero.

Cv[P1]= [1]

if Ki does not belong to P2, then count=0

Where N1= | P1|.

Then the remaining keywords (RK) have been taken and find the similarity measure for those

keywords in another web page P2.

R=P2-P1

International Journal of Machine Learning and Networked Collaborative Engineering, ISSN: 2581-3242

6

Cv[P2]= [2]

Where N2=|R|.

Gradually, the final similarity score is calculated as follows:

CV[Ki]= CV[P1]+ CV[P2] [3]

The similarity between the two pages is obtained by the computing value CV[Ki]. The near duplicates

of the web pages are obtained by using the data present in the repository. The web page with the highest

computation value is deleted from the module, i.e., URL list

Algorithm 1: DC-HA

Input: Enter the Query

Output: List of URL

1. Start

a. Enter the query (say Q).

b. Obtain URL list Ui.

c. Visit the first URL U1 //by First In First Out.

d. Scrutinize S(Ui)

e. Compare the URL U1 with the next URL U2

f. Calculate the similar computation value

1. If the computation score is higher

a. Remove URL

b. Add Unew=Uj+1

2. else

a. Repeat S(Ui)

3. End if

a. Scrutinize C(Ui)

b. Remove Uj+1

c. Add Unew=Uj+1

Efficient Distributed Web Crawler Using Hefty and Enhanced Bandwidth Algorithms for Drug Website Search

 7

4. else

a. Repeat S(Ui)

5End if
End

Bandwidth Algorithm (BW-A):

To select the next URL U, the estimation of the bandwidth BW(U) by the envoy, and the consumption

of retrieving the file (f) leads to the prediction of a fetcher. After downloading the file, the envoy can

measure the actual rate of transfer as E(U) and also used to calculate the server speed until the end of the

process. The envoy can compute the predicted total rate of transfer of the crawler DCBW as u∈S. BW(F),

where F is the group of the file that is currently given to the fetchers. By presumptuous the crawler which

previously starts the fetcher, after the fetcher finishes its current download Uc, the freed bandwidth will be

allotted to one or more downloads from starting. Hence, the crawler bandwidth is updated as

CBW=CBW−BW(Uc) and the envoy looking for document Uf in the queue, when downloading it, estimated

bandwidth will be under the level of assigned threshold L, i.e., CBW + BW(Uf) ≤ L. The URL search begins

from the first link in the queue and makes up to a given maximum depth maxd, by taking into account of high

priority documents. Envoy begins to activate a fetcher for downloading Uf, if not , it stops and starts to wait

for another download completion. When the new download does not use the available slot to the expected

bandwidth, the queue is searched for a further reference link.

Algorithm 2: BW-A

1. Set f=0

2. Retrieve the file Uf at depth d in the URL queue

3. If CBW + BW(Uf) ≤ L, assign Uf to an inactive fetcher and update CBW = CBW + BW(Uf)

4. Set f = f +1

5. Repeat step 2 until CBW ≤ L or f=maxd

7. Experimental Work

The NetBeans IDE 8.1 has been used to experiment the entire system. The web crawler is

implemented using the single system to measure the performance of pages crawled and the bandwidth of the

node. After several testing and debugging, these data are obtained. The web crawler (single node) has 2GB

RAM, Core2Duo 2.8 GHz Processor and the bandwidth limit was set to 1.5 Mbps for crawling the data.

Initially for the given keyword 40 URL's are crawled and denoted as the seed URL. The measurement of

bandwidth utilization is recorded for 1000 minutes.

International Journal of Machine Learning and Networked Collaborative Engineering, ISSN: 2581-3242

8

Figure 2: Represents the initial searching process carried out using the DC-HA

Figure 3: Comparing the first URL with the next URL

Efficient Distributed Web Crawler Using Hefty and Enhanced Bandwidth Algorithms for Drug Website Search

 9

Figure 4: Comparing the initial URL content with the upcoming URL

8. Conclusion

Generally, search engines compete against each other by size and currency of the underlying database,

also consider the quality and response time of their ranking function. Distributed web crawler architecture

was introduced for crawling web pages and provided that index service. In this paper, the combination of

hefty algorithm and bandwidth algorithm features provides an excellent outcome. The architectural design

has given the tasks of Web crawler components. The experimental work shows the improved number of web

pages downloaded and operates within the limited bandwidth using drug websites.

References

[1]. S. Saranya, B.S.E. Zoraida and P. Victor Paul, "A Study on Competent Crawling Algorithm (CCA) for

Web Search to Enhance Efficiency of Information Retrieval", Artificial Intelligence and Evolutionary

Algorithms in Engineering Systems, 2015.

[2]. P. Jaganathan and T. Karthikeyan, "Highly Efficient Architecture for Scalable Focused Crawling Using

Incremental Parallel Web Crawler", Journal of Computer Science 2015, vol. 11 (1): 120.126.

[3]. Subhendu kumarpani, Deepak Mohapatra, Bikram Keshari Ratha, "Integration of Web mining and web

crawler: Relevance and State of Art", International Journal on Computer Science and Engineering, Vol.

02, No. 03, 2010, 772-776.

[4]. Monica Peshave, and Kamyar Dezhgosha, "How Search Engines Work And A Web Crawler

Application".

[5]. Taekyoung Kwon and Yanghee Choi, Sajal K. Das, "Bandwidth Adaption Algorithms for Adaptive

Multimedia Services in Mobile Cellular Networks".

[6]. Raja Iswary, and KeshabNath, "Web Crawler", sInternational Journal of Advanced Research in

Computer and Communication Engineering,Vol. 2, Issue 10, October 2013.

International Journal of Machine Learning and Networked Collaborative Engineering, ISSN: 2581-3242

10

[7]. VladislavShkapenyukTorstenSuel, "Design and Implementation of a High Performance Distributed

Web Crawler", NSF CAREER Award NSF CCR-0093400, Intel Corporation, and the New York State

Center for Advanced Technology in Telecommunications (CATT).

[8]. Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D.Weitz. "Approximating aggregate queries

about web pages via random walks". In Proc. of 26th Int. Conf. on Very Large Data Bases, September

2000.

[9]. M. Najork. Atrax: "A distributed web crawler", Presentation given at AT&T Research, March 20, 2001.

[10]. Zhixing GAO, Kunhui LIN, "Design and Implementation of a High Performance Distributed Web

Crawler", Journal of Computational Information Systems5:6(2009) 1817-1823.

[11]. Rekha Jain, Dr. G. N. Purohit "Page Ranking Algorithms for Web Mining", International Journal of

Computer Applications (0975–8887) Volume 13–No.5, January 2011.

[12]. P. C. Saxena, J. P. Gupta, Namita Gupta, "Web Page Ranking Based on Text Content of Linked Pages",

International Journal of Computer Theory and Engineering, Vol. 2, No. 1 February, 2010.

[13]. Yushi Jing, and Shumeet Baluja, "Visual Rank: Applying PageRank to Large-Scale Image Search",

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, November 2008.

[14]. T. Haveliwala, "Topic-Sensitive Page rank: A Context-Sensitive Ranking Algorithm for Web Search,"

IEEE Trans. Knowledge and Data Eng., vol. 15, no. 4, pp. 784-796, July/Aug. 2003.

[15]. Mehdi Bahrami, Mukesh Singhal, Zixuan Zhuang, "A cloud-based web crawler architecture",

Intelligence in Next Generation Networks (ICIN), 2015 18th International Conference on 17-19 Feb.

2015.

[16]. Taher H. Haveliwala, "Topic Sensitive Page Rank", Supported by NSF Grant IIS-0085896 and an NSF

Graduate Research Fellowship. May 7–11, 2002.

[17]. Jaytrilok Choudhary, Devshri Roy, "Priority based Semantic Web Crawler", International Journal of

Computer Applications (0975 –8887), nov-2013.

[18]. Mohd Adil Siddiqui, Sudheer Kumar Singh, "URL Ordering based Performance Evaluation of Web

Crawler", International Journal of Computer and Information Technology (ISSN: 2279 – 0764), jan-

015.

[19]. Akansha Singh, Krishna Kant Singh, "Faster and Efficient Web Crawling with Parallel Migrating Web

Crawler", IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 11, May 2010.

[20]. Ali Selamat,Fatemeh Ahmadi Abkenari, "Application of clickstream analysis as Web page importance

metric in parallel crawlers", International Symposium on Information Technology (Volume:1), 15-17

June 2010.

[21]. Bing Zhou, Bo Xiao, Zhiging Lin, Chuang Zhang, "A distributed vertical crawler using crawling-period

based strategy", Future Computer and Communication (ICFCC), 2nd International Conference on

(Volume: 1), 21-24 May 2010.

[22]. Nagappan V. K, P. Elango, "Agent based weighted page ranking algorithm for Web content

information retrieval", Computing and Communications Technologies (ICCCT), International

Conference on 26-27 Feb. 2015.

[23]. R. Khanchana; M. Punithavalli, "An efficient web page prediction based on access time-length and

frequency", Electronics Computer Technology (ICECT), 3rd International Conference on 2011,

Volume: 5

Author's Biography

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Nagappan%20V.%20K.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.%20Elango.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7274903
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7274903
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Khanchana.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Punithavalli.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5942001&newsearch=true&queryText=bandwidth%20in%20web%20crawling
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5942001&newsearch=true&queryText=bandwidth%20in%20web%20crawling
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5934630

Efficient Distributed Web Crawler Using Hefty and Enhanced Bandwidth Algorithms for Drug Website Search

 11

A. Ramachandran is working as an Assistant Professor in the Department of Computer Science and

Engineering, University College of Engineering Panruti, Tamilnadu, India. He completed his Master of

Engineering at Annamalai University and pursuing a Ph.D. in Anna University. His areas of interest

are Software Engineering, Data Mining, and Web Crawlers.

Dr. R. Arun Prakash has 14 Years of teaching experience in reputed institutions and universities. He

received B.Tech. Degree in Information Technology from Bharathidasan University, Trichy, in 2003,

M.Tech. Degree in Information Technology at Sathyabama University, Chennai in 2005, and a Ph.D.

degree in the Department of Computer Science and Engineering at Anna University Chennai 2016. At

present, he is an Assistant Professor in the Department of Computer science and Engineering,

University College of Engineering, Ariyalur, Anna University, Tamilnadu, India. He is a lifetime

member of ISTE. He has been a lecturer at the graduate and post-graduate level and has participated in

several International and National level conferences and workshops. He has published around 18

papers in the reputed international journals and more than ten articles in the global and national

conferences and contributed books in programming in C and two book chapters. His primary interest is

currently M-commerce, Mobile computing, and image processing, and wireless networks.

Dr. Aghila Rajagopal, Associate Professor of Department of Information Technology, Sethu Institute

of Technology, has more than 15 years of teaching experience. She received her Ph.D. degree from

Anna University, Chennai, in 2015. Her research area includes Distributed Computing, Software

Engineering. She has published many papers in National and International journals. She is a reviewer

in various national, international Journals. She holds the membership in many professional bodies like

CSI, IAENG, IEDRC, IACSIT

Dr. Manju Khari is an Assistant Professor in the Ambedkar Institute of Advanced Communication

Technology and Research, Under Govt. Of NCT Delhi affiliated with Guru Gobind Singh Indraprastha

University, Delhi, India. She is also the Professor- In-charge of the IT Services of the Institute and has

experience of more than twelve years in Network Planning & Management. She holds a Ph.D. in

Computer Science & Engineering from National Institute of Technology Patna. She received her

master's degree in Information Security from Ambedkar Institute of Advanced Communication

Technology and Research, formally this institute is known as Ambedkar Institute of Technology

affiliated with Guru Gobind Singh Indraprastha University, Delhi, India. Her research interests are

software testing, software quality, software metrics, information security, optimization, Artificial

Intelligence, and nature-inspired algorithms. She has published more than 70 papers in refereed

National/International Journals & Conferences (viz. IEEE, ACM, Springer, Inderscience, and

Elsevier). She associated with many International research organizations as Editor of Springer, Wiley

and Elsevier books and Guest editor of International Journal of Advanced Intelligence paradigms,

reviewer for International Journal of Forensic Engineering, Inder Science, and editorial board member

of International Journal of Software Engineering and Knowledge Engineering, World Scientific.

Computer Science and Engineering of AIACT&R, Geeta colony, Delhi, India

