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Abstract   

n recent years, the learning methods are converted to one of the new research 

area. These researches are divided into two general categories. The first 

category recognizes the principles of learning the living entities and its stages. 

The second is learning based methodology to any machines that the proposed 

method of this paper is based on it. Learning is defined as changes made in the 

performance of a system based on experiences. An important feature of learning 

systems is the ability to improve their efficiency over time. In mathematical 

terms, it can be stated that the purpose of a learning system is to optimize a task 

that is not well-known. Therefore, an approach to this problem is to reduce the 

goals of the learning system to an optimization problem. So, it is defined on a set 

of parameters and its purpose is to find the optimal set of parameters. In many of 

the issues raised, there is no knowledge of the correct answers to the problem in 

supervised learning based methods especially. For this reason, the use of a 

learning method called reinforcement learning has been considered. The main 

advantage of this technique over other learning methods is the need for no 

information from the environment (except amplification signal). The other 

learning methods as supervised or unsupervised are not appropriate to these 

problems. In this method, each agent decides the next its actions based on current 

k-actions instead of one action. In this paper is proposed a new approach based on 

the reinforcement learning technique that has three versions in order to 

implementation in different areas. It behaviors based on reward and penalty 

model. The effectiveness of these interactions with the environment is evaluated by the maximum and 

minimum of the number of rewards and penalties that are taken from the environment. The three versions are 

simple, sequential and unstructured linear learning methods so they evaluated in different possibilities to get 

the appropriate responses. Depending on the needs of any system, they can be used. The mode of 

convergence of actions in the proposed automaton (machine) in six different scenarios is examined.   

 

1 Introduction 

In recent years, the process of learning creatures is converted to one of the new research area [1]. 

These researches are divided into two general categories. The first category introduces learning the live stage 

presence and recognizes their principles. Aim of the second group is provide a methodology for placing 

these principles in a machine. Learning is defined as changes made in the performance of a system based on 
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experiences [2]. An important feature of learning systems is the ability to improve their efficiency over time. 

The most prominent features of learning-based systems are that they improve themselves over time. In 

mathematical terms, it can be stated that the purpose of a learning system is to optimize a task that is not well 

known [3, 4]. Therefore, an approach to this problem is to reduce the goals of the learning system to an 

optimization problem, which is defined on a set of parameters and aims to find a set of optimal (appropriate) 

parameters. In many of the issues raised, there is no knowledge of the correct answers to the problem, which 

is required by supervised supervision. For this reason, the use of a learning method called Reinforcement 

Learning (RL) has been considered. This category of learning method is an orthogonal approach to solving 

different and more difficult problems. It uses a combination of dynamic programming and supervisory 

learning to achieve a powerful machine learning system. In the RL is defined a goal for the learning agent so 

the agent must be achieve it. Consequently, the agent learns how to achieve the target by different tests in 

various environment [5, 6]. In the RL, a learner's factor in learning through repeated interactions with the 

environment leads to an optimal control policy. The effectiveness of these interactions with the environment 

is evaluated by the maximum (minimum) of the number of rewards (penalty) taken from the environment. 

The main advantage of the RL over other learning methods is the need for no information from the 

environment (except amplification signal) [2].  

The first attempts to use the learning automata in control applications were carried out by Fu et al [7]. 

In these years, this field has been very intensive and relevant studies. Among these research studies, we can 

mention the uses of learning automata in the estimation of parameters, pattern recognition, linear update 

methods, game theory [8, 9], McLaren [10], etc. One of the learning based approaches that can be useful in 

different environments is Bayesian networks. Bayesian methods provide a standard for optimal decision-

making, although in many cases it is incalculable. The [11] proposes A novel decentralized decision making 

scheme was proposed in [11] that it is based on the Goore Game. The nature of each decision-maker is 

naturally Bayesian and avoids the difficulty of updating hyperactive parameters of the sibling conjugate 

primers and calculating them from random sampling from these posterior. Learning-based systems have 

become very popular and are nowadays used in many business and scientific fields. On the other hand, they 

have the ability to integrate with todays technologies and research area. On many occasions, the combination 

of highly valuable products and research is also achieved as multidisciplinary.  

A learning automaton consists of two main parts. One of them is stochastic learning automaton that 

has limited actions number and a random environment in which the automaton is associated with it. The 

other is the learning algorithm that the automata learns the optimal operation using it. A random automaton 

is defined as   ,,,, GFSA  . Where, α shows set of automata actions. α is defined from index one to r, 

so, r is number of automatic actions.  r ,...,, 21 . β is input sets of automata that its domain is 

assumed as m so  m ,...,, 21 . F is new status generator function that is defined as  F . G is 

output function that the output function that maps the current state to the next output (  G ). ϕ presents 

the input states set of the automata is at the n moment as 
 kn  ,...,,)( 21

. The set α includes automated 

outputs (actions), in which the automation in each step chooses an operation of r for this set to apply to the 

environment. If the mapping F and G are definite, the automata is called deterministic automata. When the F 

and G maps are random, the automata is called non-deterministic automata.  

Learning automata are divided into two groups of fixed and variable structure automata. In stochastic 

automata with a fixed structure, the probabilities of automated operations are constant. While in stochastic 

automata with a variable structure, the probabilities of automated operations are updated in each repetition. 

In this structure, changing the likelihood of actions is done based on the learning algorithm and the internal 

state of the automata is represented by the probabilities of the operation of the automata. In fact, each 

automaton machine has some states as input and output that they are equivalent in almost times. The action 

probability vector of the operation that is defined at the follow equation defines the internal state of the 

automaton at the instant n.  

               (1) 

So that, at the beginning of the activity of the automaton, the probability of its operation is equal and 

equal (r is the number of automatic operations). 
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             (2) 

The environment can be represented as  cE ,,  . Where, α shows the input sets of environment, 

β presents the output sets of environment, and c introduces set of penalty probabilities. α={α1 , α2 ,…, αr}, 

β={β 1 , β 2 ,…, β m}, c={c1 , c2 ,…, cr}. 

The input of the environment is one of the r automata actions. β specifies the output (response) of the 

environment to each action. For example, the system is called P-Model system if the response of the β is 

binary. In such an environment, βi (n)=1 is as an unfavorable or failure response. The favorable or successful 

answer is when the βi (n) is zero. Other environment model is Q-Model. In this model, βi (n) contains a 

limited number of values in the interval [0, 1]. In addition, in S-Model, βi (n) is a random variable in the 

interval [0, 1]. As mentioned above, c specifies the probabilities of penalty (failures) of environmental 

responses and is defined as equation 3. 

        (3) 

It shows that αi may receive an undesirable response from the environment. The values of αi are 

unspecified and is assumed the Ci have at least one unique value. The same way, the environment can be 

represented by the set of reward probabilities (success). So, it is shown by di. The di indicates the probability 

of receiving the desired response to the action of αi.  In static environments, the probability of penalty of αi 

are constant. While in non-stationary environments, the probabilities of fines change over time. The 

connection of random automata with the environment is shown in figure 1.  

 

Fig. 1: SLA Schema 

The figure 1 refers a learning algorithm that is called the Stochastic Learning Automata (SLA) [10]. 

Similarly, SLA can be defined as LA={α,β, p, T}. Where, α is defined from index one to r, so, r is number of 

automatic actions. α={α1 , α2 ,…, αr}. β is input sets of automata that its domain is assumed as r so β={β1 , β2 

,…, βr}. P shows action probability vector and is represented as p={p1 , p2 ,…, pr}. In this case, our learning 

algorithm is: 

                       (4) 

If T is a linear operator, the reinforcement learning algorithm is called linear. Otherwise, it is called 

Non-linear. If the learning automata in repeat n, chooses a sample action such αi and receive an appropriate 

response from the environment, the likelihood of αi action increases and the likelihood of other actions 

decreases. Conversely, if the response of the environment is undesirable, the likelihood of action of αi 

decreases and the probability of other automated actions increases. We can increase the performance of the 

system by selecting more than one action at the same time while in the previous methods was selected a 

single action at each stage.  

The learning based machines can be applied on the various application area such as smart systems, 

wireless ad-hoc networks, pervasive systems, IoT, emotional analysis systems etc. [12-14]. In the literature, 

many learning based techniques are applied on the above applications especially on wireless sensor 

networks. One the popular used models is cellular automata. It was introduced by Von Neumann at 1940 and 

after that, he proposed a mathematician named Olam Modelli to study the complex systems behavior. The 

cellular automata are, in fact, discrete dynamic systems whose behavior is based entirely on local 

communication. From the point of view of pure mathematics, they can be considered as a branch of 

topological dynamics and from the point of view of electrical engineering, iterative arrays. In cellular 
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automation, space is defined as a network that is called a cell to each house. Time runs out discretely and its 

rules are global. Through each cell, each cell acquires its new status by considering its neighbors. Cellular 

automata can also be considered as computational systems that process the information they encode on their 

own. In addition, a cellular automaton with its control unit can be interpreted as a SIMD machine. The rules 

of cellular automation explains how to affect the cell's adherence to its neighboring cells. We call a cell is a 

neighbor of another cell, if it can affect it in one-step and in accordance with the rules. The rules are 

generally divided into three categories in this automaton. Firstly is general rules; in this rule, the amount of a 

cell in the next stage depends on the amount of single neighboring cells in the current state. In the second 

rule (totalistic Rules), the amount of a cell in the next step depends on the number of neighboring cells that 

are in different states. In this type of rule, unlike general rule, attention is not paid to single cells. In the last 

rule (outer totalistic rules), determining the next state of the cell is also effective in the current state. 

In the section 2 of the paper is introduced a multi actions and learning based machine that has three 

versions. So, the evaluation results of them are discussed in the section 3. Finally, the conclusion of the paper 

is explained in the section 4.    

2 Proposing Linear Learning Algorithms 

In the standard learning automaton, an action is selected at each step. Then, the probability vector of 

the actions is updated with considering the appropriate or unfavorable environmental responses. If the 

appropriate or inappropriate environmental response is not based on the effect of an action, gives 

unsuccessful results. In this paper is proposed a new type of learning automaton that in this type of machine, 

instead of choosing one action, k-actions are chosen and then the environment response is received. It is an 

approach based on reward and penalty system so it is based on reinforcement learning and game theory. The 

environmental response can be determined by different methods. In the majority voting technique, the 

optimal appropriate environment response is appropriate when the effect of k/(2 + 1) of the selected action in 

the environment has the same environment response. Otherwise, the environmental response is 

inappropriate. All selected actions will be penalized if the response is inappropriate. If the response is 

desirable, the actions whose effects on the environment have the same environmental response (effective 

actions in giving the desired environment response) are rewarded and other actions are penalized. The 

initialized parameters of proposed machine is defined as SLA and is based on Eq. 4.  

In this machine, in each step k actions are selected and applied in the environment. The acceptable 

answer sets of automata to choice of h
th

 action in step of s is calculated based on Equation 5. 

             (5) 

In this status, the h
th

 selected answer is deleted from the next actions of the related answer sets. In this 

machine, three types of linear learning algorithms are suggested for the automata.  

The first learning algorithm, which we call the simple linear learning algorithm and is calculated by 

Equations 6 and 7. So, The Eq. 6 is used for finding appropriate answers and the Eq. 7 is applied to find the 

inappropriate answers. In here is assumed the h
th

 selected action in n
th

 step is action αi. 

     (6) 

   (7) 

The relationship between these two equations with the probability vector is expressed by equation 8. 

  

                       (8) 

As with the relationships of the first learning algorithm, in this type of learning algorithm, at each 

stage, all probability vector members are updated to a number of k times.  
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The second learning algorithm is called a sequential linear learning algorithm and is formulized by 

Equations 9 and 10. So, The Eq. 9 is used for finding appropriate answers and the Eq. 10 is applied to find 

the inappropriate answers. In here is assumed the h
th

 selected action in n
th

 step is action αi. 

             (9) 

   (10) 

The value of p̂ is calculated by Equation 11.  

  (11) 

In the Eq. 9 and 10, α presents reward parameter and b shows the penalty parameter. The probability 

vector of the automata is updated according to the Equation 12 in order to return the machine to normal 

conditions and select the (h+1)
th

 action.  

       

                                (12) 

As it is known from the relations of the second learning algorithm, at each step of in this type, the 

probability of the action of the h
th

 selected action will be updated for h times, and actions that are not 

selected are updated to k times. 

The third learning algorithm is called unstructured linear learning algorithm and is formulized by 

Equations 13 and 14. So, The Eq. 13 is used for finding appropriate answers and the Eq. 14 is applied to find 

the inappropriate answers. In here is assumed the h
th

 selected action in n
th

 step is action αi. 

 

  (13) 

             (14) 

The value of p̂ is calculated by Equation 15. Where, αk(s) presents k actions selected in s step. In 

addition, α presents reward parameter and b shows the penalty parameter.   

                   (15) 

The probability vector of the automata is updated according to the Equation 16 in order to return the 

machine to normal conditions and select the (h+1)
th

 action. 

     

                      (16) 

As it is known from the relations of the third learning algorithm, at each step of in this type, the 

probability of the selected actions will be updated for one time, and actions that are not selected are updated 

to k times. 
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3 Evaluation  

With a sample of automata, we examine the mode of convergence of operations in this type of 

automaton (machine) in MATLAB software simulation. This sample machine has 6 actions, and each step is 

selected 3 steps. By responding to the environmental responses (responses from the effects of each action on 

the environment), the desired response is detected. Given the appropriate response, the related actions are 

rewarded and penalized. The probability of receiving the appropriate response from the environment for each 

operation is shown in Table 1.  

 

Table 1. Possibility to receive the optimal appropriate responses from the environment for each of the actions in the proposed 

learning machine. 

Action # 1 2 3 4 5 6 

Possibility to get the appropriate response 0.1 0.9 0.1 0.7 0.7 0.5 

The reward and penalty parameters are set at 0.01. The mode of convergence of automated actions for 

different learning algorithms is seen in Figures 2,3 and 4.  

 

Fig. 2: Results of convergence of automated actions in simple linear learning algorithm. 

 

Fig. 3: Results of convergence of automated actions in sequential linear learning algorithm. 
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Fig. 4: Results of convergence of automated actions in unstructured linear learning algorithm. 

It is possible to use this method in various fields such as wireless ad-hoc networks and IoT based on 

the results. Each proposed algorithm can be useful in the related environment application based on system 

requirements. In additional, this method can be used as a mixed approach in different learning based 

algorithms as Bayesian networks, game theory techniques, Q-learning, Sarsa, neural network and deep 

learning.  

4 Conclusion and Future Works   

In this paper was proposed a new model of learning automaton machine that it worked based on K-

actions contrary to existing methods in the literature. It affects the response of the environment based on 

selecting and analyzing the k-actions. In this paper was introduced three different linear learning methods as 

simple, sequential and unstructured. The Analysis results on the six samples of actions, which the k was 

supposed 1 to 6, are shown the each method’s performance. They can be used in various application areas 

that we will apply it on the wireless Ad-hoc networks and IoT research area. The third method seems to be 

high performance on wireless networks that it is one of the future works. It is possible to use this method in 

various fields such as wireless ad-hoc networks and IoT based on the results. Each proposed algorithm can 

be useful in the related environment application based on system requirements. In additional, this method 

can be used as a mixed approach in different learning based algorithms as Bayesian networks, game theory 

techniques, Q-learning, Sarsa, neural network and deep learning. In future work, we have a plan in research 

study on wireless sensor networks based on the proposed algorithms. We will analyze the simulation results 

and will compare them with the relevant methods in the literature.      
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