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Abstract    
n this article, we investigate the generalized leaky integrate-and-fire (GLIF) 
neuron model with stochastic synaptic conductance. A neuron remains 
connected with other neuron via dendrites and axons at synapse, which can be 

treated as an electrical capacitor. Dendrites carry electro-chemical signals from 
input neuron to synapse whereas axons are responsible for their transmission form 
synapse to other neurons. Concentration of these electro-chemicals in synapse 
varies during entire time period. We investigate the effect of varying 
concentration of electro-chemicals at synapse in a single neuron model. 
Concentration variation of electro-chemicals at synapse is incorporated as noise in 
GLIF model. Excitatory and inhibitory synaptic conductance of neuron in GLIF is 
assumed as stochastic entities driven by Gaussian White noise. Stationary state 
membrane potential distribution for the proposed model is computed with 
reflecting boundary conditions, which is noticed as geometrically distributed. In order to investigate spiking 
activity and information encoding mechanism, an extensive simulation based study has been carried out. 
Temporal encoding technique is used to analyze the encoding mechanism. It is noticed that ISI distribution 
has higher variance with respect to excitatory input than inhibitory input. ISI distribution also exhibits the 
power-law behavior for electro-chemical balance situation. 

1. Introduction 
Neuron processes information in form of action potential (spike) and transmits in sequence of spikes 

[11, 16]. These spike sequence exhibit the highest scale of variability in their patterns.  Variability in spike 
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sequence contains encoded information which transmits to other neurons or part of body [11, 16, 19]. A 
number of measurements have suggested the reliability of encoded information into variable spike 
sequences. Neurotransmitters, which are responsible for membrane potential fluctuation, can be categorized 
in two classes: namely, excitatory neuro-transmitters and inhibitory neuro-transmitters [4, 6, 22]. Excitatory 
neurotransmitter increases the membrane potential whereas inhibitory neurotransmitter decreases the 
membrane potential value. Random arrival of these neurotransmitters causes fluctuation in net potential 
value; which also affect the spiking activity and generates variability in spiking pattern [4, 6]. Potential value 
contributed by these neurotransmitters can be classified as excitatory potential and inhibitory potential and 
their arrival pattern has been modeled via Poisson process i.e. arrivals are independent of each other [10, 19, 
23].  

Lapicque has introduced the integrate-and-fire (IF model) neuron model which is also the first 
mathematical model of neuron [1, 25]. In IF model, it is assumed that a neuron receives potential in form of 
neurotransmitters from other neurons and external world in form of input, which increases its membrane 
potential and at a fixed potential value (threshold), it emits collected neurotransmitters and generate an action 
potential. Leaky Integrate-and-Fire (LIF) neuron model is an extension of IF model, where membrane decay 

constant ( ) has been incorporated [1, 14, 25]. Mathematical representation for rate of change of membrane 

potential in LIF model can be given as below. 

( ) ( )
dV

V t I t
dt

           (1)  

Here ( )I t  is the time dependent input stimulus. Many researchers have modeled ( )I t in different 

ways viz. constant value, periodic value, stochastic value driven by Gaussian white noise, etc. A number of 
researcher have assumed ( )I t as a sum of current due to excitatory neurotransmitter and inhibitory 

neurotransmitter [2, 3, 22] i.e. ( )I t can be replaced via 

( ) ( ) ( )e e e i i iI t G V V S G V V S          (2)  

Here, eG  and iG  are excitatory and inhibitory synaptic conductance, eS  and iS  are excitatory and 

inhibitory synaptic strengths. Substitution ( )I t of from Eq. (2) to IF model and LIF model transform them 

into Generalize Integrate-and-Fire (GIF) and Generalized Leaky-Integrate-and-Fire (GLIF) neuron models 
[2, 3, 28]. In this article, we investigate spiking activity, information processing mechanism and stationary 
state membrane potential for GLIF model with stochastic synaptic conductance. 

The article is structured in 6 sections. After a brief introduction about IF model, spiking variability in 
section 1, Section 2 deals with the formulation of GLIF model. Here stochastic synaptic conductance has 
been used to model the assumption. Section 3 deals with mathematical computation of GLIF model and 
stationary state membrane potential for GLIF neuron model is computed. Information processing mechanism 
into GLIF model is investigated in next section 4. Here, a detailed simulation based study is performed to 
compute ISI distribution. Discussion related to model and findings has is elaborated in section 5. Finally, the 
last section contains conclusions and future scope for the study. 

2. Generalized Leaky Integrate-and-Fire Neuorn Model 
Driving After more than 50 years of Lapicque’s IF model, Stein has proposed GIF model where input 

stimulus is modeled as a sum of pre-synaptic excitatory and inhibitory currents [2, 3, 28]. Furthermore, Stein 
has assumed the arrivals of pre-synaptic current as a Poisson process and investigated information processing 
in terms of neuronal firing rate [27]. Wilbur and Rinzel [29] have investigated Stein’s Generalized IF model 
only for excitatory neurotransmitters. They have measured multiple parameters like firing rate, calculation 
time etc. which is important for physiological point of view. Wilbur and Rinzel [29] have also investigated 
the inter-spike-interval distribution (ISI distribution). Tuckwell [26] has studied the firing rate of GLIF 
model with excitatory current and inhibitory current, both, and noticed a fine agreement in firing rate with 
existing experimental data. Richardson and Gerstner [20] have studied GLIF model with stochastic synaptic 
conductance. They have modeled synaptic conductance via Ornstein-Uhlenbeck process and have computed 
voltage distribution, conductance distribution, ISI distribution etc. Lansky [17] has assumed evolution of 
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membrane potential in GLIF model as a diffusive process and computed ISI distribution. He [17] has also 
computed the cumulative ISI distribution for exponentially distributed excitatory and inhibitory 
neurotransmitters. Hurby [13] has studied GLIF model with realistic synaptic potential and noticed bursting 
period, quiescence period, spiking rate and spike frequency. In order to avoid membrane potential 
fluctuations, Goriset. al. [12] modeled spike generation in GLIF model as a Poisson process and investigated 
response distribution with excitatory neurotransmitters. This model [12] is found comparatively more 
suitable for visual sensory neurons. Teeter et. al. [24] has applied unsupervised methods with GLIF neuron 
to classify cell types in mammalian neocortex. Choudhary et. al.  [4], Choudhary and Solanki [6] has 
modeled membrane potential contribution due to excitatory neurotransmitters and inhibitory 
neurotransmitters via hypo-exponential distribute delay kernel in distributed delay framework (DDF) of 
threshold based neuron model. Their model is capable to generate different kinds of spiking patterns as 
reported in multiple literatures. Uni-modal, bi-modal, multi-modal etc. kind of ISI distribution patterns has 
been noticed in their investigation [4, 6]. DDF provides a way to capture the effect of past values of 
membrane potential over its present evolution so that variability in spiking pattern can be explained in better 
way [7]. Stationary state membrane potential distribution of LIF model in DDF exhibit no change under the 
change of delay kernel functions and statistically remains constant which is noticed as Gaussian distributed 
[6, 7]. 

3. Stationary State Probability Distribution in GLIF Model 
Substitution of ( )I t from Eq. (2) to Eq. (1) yields [2, 3] 

( ) ( ) ( )e e e i i i

dV
V t G V V S G V V S

dt
           (3)  

Here eV and iV are initial value of excitatory potential and inhibitory potential. Further simplification 

of Eq. (3) results into GLIF as  

0( ) ( ) ( )m e e e i i i

dV
V V G V V S G V V S

dt
       

    (4)  

m is membrane resistance. It is noticed in multiple literature that electrical properties of membrane 

changes after each spike so that synaptic conductance also changes [20]. Thus, excitatory and inhibitory 

synaptic conductance eG  and iG  can be assumed to be a time dependent entities so that Eq. (4) can be 

rewritten as      

0( ) ( )( ) ( )( )m e e e i i i

dV
V V G t V V S G t V V S

dt
       

    (5)  

Following Richardosn and Gerstener [20], ( )eG t  and ( )iG t  are assumed to be stochastic entities. In 

forgoing study, we are modeling these two entities driven by Gaussian white noise i.e. ( ) ( )e e eG t G t


   

and ( ) ( )i i iG t G t


   [5, 9, 23]. Here eG


and iG


are mean value of excitatory and inhibitory synaptic 

conductance. ( )e t and ( )i t  are mutually exclusive Wiener processes driven by Gaussian white noise with 

intensity , 0e 
,

0i   ,respectively, i.e. ( ) ( ) 0e it t    , ( ) 0e t 
,

( ) 0i t 
,

2

1 2( ) ( )
2

e
e et t

  
 and 

2

1 2( ) ( )
2

i
i it t

  
. Thus Eq. (5) simplifies as 

0( ) ( ( ))( ) ( ( ))( )m e e e e e i i i i i

dV
V V G dW t V V S G dW t V V S

dt
  

 

        
 (6)  



Information Processing in GLIF Neuron Model with Noisy Conductance 

 

 105 

Further simplification of Eq. (6) results into 

( ) ( )
( ) e e e e e i

e i
m m

S V V S V V
dV AV B dt dW dW

 
 

    
       

   
  (7) 

Here, 
1 e e i i

m

G S G S
A



 

 
  and 0 e e e i i i

m

V G V S G V S
B



 

 
  

Let ( , )p V t  be the spatial probability distribution corresponding to the membrane potential ( )V t
described by Eq (7), then its associated Fokker-Planck equation can be given as 

2 2 2 2 2
2

2 2

1
{ ( ) } ( )

2
e e i i

m

S Sp
AV B p V p

t V V

 


   
         

   (8) 

The probability current-flux ( , )J V t associated with Eq. (8) takes the form  

2 2 2 2
2

2

1
( , ) ( ) ( )

2
e e i i

m

S S
J V t AV B p V p

V

 


  
      

    (9) 

In order to obtain stationary state probability distribution of membrane potential with reflecting 
boundaries 

( , ) 0J V t           (10) 

Simultaneous use of Eq. (9) and Eq. (10) results 

2 2 2 2
2

2

1
( ) ( ) 0

2
e e i i

m

S S
AV B p V p

V

 


  
     

     (11) 

Further simplification of Eq. (11) results 

2
2 2

2 2
2

p A B
V V

V T T

        
       (12) 

Here 
2 2 2 2

2
e e i i

m

S S  


 
 

 
 Integration of Eq. (12) with reflecting boundary conditions results 

/Vp V e            (13) 

Here, 
2

2 1
A 

 

  
 

 and  
2

2B 


   . When V   is very large as compared to   i.e. 
0

V




  then 

Eq. (13) takes the form becomes 

p KV           (14) 

Here K is a constant value. 

4. Infomation Processing in GLIF Model  
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In order to investigate the information processing mechanism in the GLIF model with proposed 
stochastic conductance, an extensive simulation based study is performed. We apply Monte-Carlo numerical 
simulation technique to investigate associated stochastic differential equation in the proposed GLIF model. 

There are a number of numerical simulation methods are proposed in literature, we apply Euler-

Maruyama (EM) scheme in the simulation study [15]. Following EM scheme, the time duration T for 

membrane potential evolution is divided into n equally spaced sub-intervals 1[0, ]t , 1 2[ , ]t t ,…, 1[ , ]n nt t , 

each sub-interval has size  /h T n which is also known as step size. According to Eq. (7), let iV  be the 

membrane potential at time it t  then the membrane potential at successive time 1it t  becomes 

 1

( ) ( )e e e e e i
i e ei i ii

m m

S V V S V V
V Vi AV B h dW dW

  
 

    
       

   
        (15) 

for 1,2,...,i n , with initial values 0 0V  , 0 0X   and 0 0Y  . ei and ii are independent 

identically distributed standard Gaussian variates. 

 

 
Fig. 1: Spiking Pattern in GLIF Model 

 
 

 
Fig. 2 :Spiking Pattern in GLIF Model 

Neuron encodes information in two ways, namely, rate encoding scheme and temporal encoding 
scheme [19, 22, 23]. We apply temporal encoding scheme to investigate information processing mechanism 
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in the GLIF model. Neuron uses time interval between two consecutive spikes to encode information in rate 
encoding scheme. The probability distribution of this time intervals is known as inter-spike-interval (ISI) 
distribution. In order investigation information processing mechanism in GLIF model, spiking pattern of the 
propose model, for different combination of parameters, is investigated. For similar combination of 
parameter values, ISI distribution of the model is also studied. Combination of parameter values is given in 
Table 1. Spiking pattern for the GLIF model is shown in Fig 1. to Fig 5 whereas Fig 6 to Fig 10 illustrates 

ISI distribution for the GLIF model with parameter combinations given in Table 1. We use , 0V , thresholdV , 

resetV , 0
EV  and 0

IV  as a constant  throughout the simulation study. Their values are 1, -80, -15, -80, -15 and 

-75, respectively. We varied rest of six parameter values as given in the following Table1. 

 

 
 

Fig. 3: Spiking Pattern in GLIF Model 
 
 
 

 
Fig. 4: Spiking Pattern in GLIF Model 
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Table 1:Combination of parameter values 

Fig. No. 
EG  IG  ES  IS  E  I  

1, 6 0.5 0.7 1 -1.3 0.1 0.3 

2, 7 0.5 0.7 1 -1.1 0.1 0.4 

3, 8 0.5 0.7 1.1 -1.5 0.1 0.1 

4, 9 0.5 0.7 1.1 -1.5 0.3 0.3 

5, 10 0.3 0.5 1.1 -1.1 0.3 0.3 

 
 

 
Fig. 5: Spiking Pattern in GLIF  Model 

 
 
 

 
Fig. 6: Inter-Spike-Interval distribution for GLIF Model  
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Fig. 7: Inter-Spike-Interval distribution for GLIF Model 

 

Fig 1 to Fig 3 represent bursting nature in spiking pattern. This pattern is occurring due to small value 
of inhibitory input. When the value of inhibitory input (arrival rate and noise) is smaller, GLIF neuron 
achieves threshold value in quicker time as shown in Fig 1 and Fig 2. Further increment in inhibitory input as 
compared with excitatory input, the GLIF neuron exhibits noisy behavior in spiking pattern as shown in Fig 
3. Here, inhibitory input moves neuron to opposite direction from firing threshold thus results into more 
random behavior in spiking pattern.  Fig 4 and Fig 5 contains less spikes due to the further increase in 
inhibitory input than excitatory. Thus, it is noticed that inhibitory input (electro-chemicals) contributes to net 
membrane potential so that it move away from firing threshold. Fig 6 to Fig 10 represents ISI distribution for 
spiking activities of the GLIF neuron as shown in Fig 1 to Fig 5. Spiking patterns in Fig 1 to Fig 5 are shown 
only for initial 2000 msec time period whereas ISI distribution is obtained for 10000000 msec time duration.  
It is well illustrated in Fig 6 to Fig 9 that increase in inhibitory input leads GLIF neuron not to spike where as 
excitatory input enforces membrane potential to threshold value. This behavior of excitatory and inhibitory 
electro-chemicals increases the firing time of GLIF neuron so that the variance in ISI distribution increases.  
Fig 10 exhibits a situation when arrivals of excitatory and inhibitory inputs are approximately similar so that 
spiking rate of GLIF model reduces which decreases the spiking activity and increases the inter-spike-
interval time duration. Fig 11 represents the ISI distribution on (shown in Fig 10) on Log-log scale. A 
straight line with slope 1.7102 is fitted on the scattered ISI distribution. Increase in the variance of the ISI 
time is due to the reason that electro-chemicals, working as a memory element, exhibits time dependent 
behavior. 

 
Fig. 8: Inter-Spike-Interval distribution for GLIF Model 
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Fig. 9: Inter-Spike-Interval distribution for GLIF Model 

 
 

 
 

Fig. 10: Inter-Spike-Interval distribution for GLIF Model 
 
 
 
 

 
Fig. 11: Inter-Spike-Interval distribution on Log-log Scale for GLIF Model 
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5. Discussion 
The power law is one of the prominent features for many-body problems [18]. A random variable 

having power-law behavior, can exhibit it in entire domain space or in a sub-domain space; which can be 
defined by the following generalized form [18] 

1

2

( ); ( , )

( ) ; [ , ]

( ); ( , )

x x a

p x x x a b

x x b










 
 
  

       (16) 

Here, a random variable A with an attribute x  has probability distribution function ( )p x . It has 

three sub-domains ( , )a , [ , ]a b and ( , )b  . 1( )x and 2 ( )x are two different functions in two different 

sub-domains ( , )a and ( , )b  . x   is a third function in sub-domain[ , ]a b with power-law behavior 

which has   as a normalization constant and ( 0)   as a constant exponent. In this way attribute x  for 

random variable A  have three different behaviors in their three respective sub-domains as defined in Eq. 

(16). It is a challenging task to compute parameter values like ( , , )a b  for a probability distribution. In 

order to obtain the value of constant exponent  as defined in Eq. (16), maximum likelihood technique 
provides a way to examine the power-law behavior which maximizes logarithm of probability distribution. 
The power law behavior can also be examined on Log-log scale scattered distribution [18].  A straight line 
can be fitted in sub-domain having power law behavior on scattered distributions. This line fitting also helps 
to examine system’s attribute evolution dynamics [8, 18]. A positive slope value of fitted straight line 
suggests linear increase in attribute whereas negative slope depicts the linear decrease. An attribute which 
has constant behavior in time domain, will have a slope value 0 for fitted straight line. 

GLIF neuron has a kind of gamma distribution for membrane potential in its stationary state with 
reflecting boundary conditions as shown in Eq. (13). When the membrane resistance is very small as 
compared to the membrane potential, ISI distribution as shown in Eq. (13), reduces to exhibit the power-law 
behavior, which is noticed in Eq. (14). Occurrence of the power-law behavior for stationary state membrane 
potential suggest the long-range dependency for electro-chemicals moving to-and-fro from the synapses. 

6. Conclusion and Future Scope 
We investigate the GLIF model with stochastic synaptic conductance. Noise generated via multiple 

kinds of electro-chemicals, molecules and ions is captured via well established Winner process. 
Incorporation of Wiener process into the GLIF model, turn it into a system with colored noise where noise 
generates huge fluctuations as it becomes multiple of current value of the state variable [16, 23]. It also 
provides an essential parameter for long-range dependency of the membrane potential on the information. 
This long range dependency behavior in information processing occurs due to the memory elements such as 
electro chemicals. These elements contribute to membrane potential for large time interval results the power-
law behavior in stationary state membrane potential distribution and ISI distribution of the GLIF model with 
stochastic synaptic conductance.  

We have investigated membrane potential distribution in stationary state and temporal coding 
technique of information processing of the neuron. It will be interesting to investigate multiple other neuro-
dynamical features of the proposed GLIF model with or without DDF. 

References 
 

[1] Abbott, L. F. and Dayan, P. “Theoretical Neuroscience: Computational and mathematical modeling of neural 
systems”,The MIT press, 2001 [ISBN-10: 9780262541855]. 

[2] Burkitt, A. N. “A Review of the Integrate-and-Fire Neuron Model: I. Homogeneous Synaptic Input”, 
BiologicalCybernetics, Vol. 95, No.1, pp.1-19, 2006, [DOI: 10.1007/s00422-006-0082-8]. 



International Journal of Machine Learning and Networked Collaborative Engineering, ISSN: 2581-3242 

 

112 

[3] Burkitt, A. N. “A Review of the Integrate-and-Fire Neuron Model: II. Inhomogeneous synaptic Input and Network 
Properties", Biological Cybernetics, Vol. 95, No. 2, pp. 97-112, 2006. 

[4] Choudhary, S. K., Singh, K. and Bharti, S. K. “Variability in Spiking Pattern of Leaky Integrate-and-Fire Neuron 
Due to Excitatory and Inhibitory Potentials”, 2nd International Conference on “Computing for Sustainable Global 
Development”, pp. 2025-2030, March 2015 [INSPEC Accession Number: 15110012]. 

[5] Choudhary, S. K. and Bharti, S. K., “Information Processing in Neuron with Exponential Distributed 
Delay”,International Journal of Machine Learning and Networked Collaborative Engineering, Vol. 02 No. 02, 
2018,pp 58-66. doi: https://doi.org/10.30991/IJMLNCE.2018v02i02.003. 

[6] Choudhary, S. K. and Solanki, V. K. “LIF Neuron with Hypo-exponential Distributed Delay: Emergence of 
Unimodal, Bimodal, Multi-Model ISI Distribution with long tail” in Recent Patent on Engineering, Vol. 4, Issue, 4, 
2019. 

[7] Choudhary, S. K. and Solanki., V. K.  “Spiking Activity of a LIF Neuron in Distributed Delay Framework,” 
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 3, No. 7, pp. 70-76, June 2016, 
[DOI: 10.9781/ijimai.2016.3710]. 

 [8] Clauset, A., Shalizi, C. R. and Newman, M. E. J. “Power-law distributions in empirical data”, SIAM Review, 51(4) 
(2009) 661-703. 

[9] Destexhe, A. and Lilith, M. R. “Neuronal Noise,” Springer Series in Computational Neuroscience, 2012. 

[10] Gerstner, W. and Kistler, W. M. “Spiking Neuron Models: Single Neurons, Populations, Plasticity,” Cambridge 
University Press, 2002, [ISBN-10: 0262514206]. 

 [11] Gabbiani, F. and Koch, C. “Principles of Spike Train Analysis. In: Koch C, Segev I (eds) Methods in Neuronal 
Modeling: From Ions to Networks,” MIT Press, Cambridge, 1998. 

[12] Goris, R. L. T., Movshon, A. and Simoncelli, E. P. “Partitioning Neuronal Variability”, Nature Neuroscience, Vol. 
17, No. 6, pp. 858-867, 2014. 

[13] Hruby, P. “Analysis of Bursting in Stein’s Model with Realistic Synapses”, Gen. Physiol. Biophys. pp. 305-311, 
1995. 

[14] Izhikevich, E. M. “Which Model to Use for Cortical Spiking Neurons?” IEEE Transactions on Neural Networks, 
Vol. 15, No. 5, pp. 1063-1070, 2004. 

[15] Kloeden, P. E. and Platen, E, “Numerical Solution of Stochastic Differential Equations,” Springer, Berlin, 1992. 

[16] Koch, C. “Biophysics of Computation: Information Processing in Single Neurons”, Oxford University Press, 1998. 

[17] Lansky, P. “On Approximation of Stein’s Neuronal Model”, Journal of Theoretical Biology, Vol. 107, pp. 631-647, 
1984. 

[18] Mansfield, M. L. “Numerical tools for obtaining the power-law representations of heavy-tailed datasets”, The 
European Physical Journal B, 89:16 (2016) 1-13. 

[19] McDonnell, M. D., Ikeda, S. and Manton, J. H. “An Introductory Review of Information Theory in the Context of 
Computational Neuroscience”, Biological Cybernetics, Vol. 105, pp. 55-70, 2011.  

[20] Richardosn, M. J. and Gerstener, W. “Synaptic Shot Noise and Conductance Fluctuations Affect the Membrane 
Voltage with Equal Significance”, Neural Computation, Vol. 17, No. 4, pp. 923-947. 2005. 

[21] Ross, S. M. “Introduction to Probability Models,” 9th Edition, Academic Press, 2007. 

[22] Smaili, K., Kadri, T. and Kadry, S. Hypoexponential Distribution with Different Parameters,” Applied 
Mathematics, Vol. 4, pp. 624-631, 2013. 

[23] Stevens, C. F. and Zador, A. “Information through a Spiking Neuron”, Advances in Neural Information Processing 
Systems, pp. 75-81, MIT Press. 1996. 

[24] Teeter, C.  et. al. “Generalized Leaky Integrate-and-Fire Models Classify Multiple Neuron Types”, Nature 
Communications, Vol. 9, Article No. 709, 2018. 

[25] Tuckwell, H. C. “Introduction to Theoretical Neurobiology: Volume 2 Non Linear and Stochastic Theories,” 
Cambridge University Press, 1988, [ISBN-10: 0521022223]. 

[26] Tuckwell, H. C. “Frequency of firing of Stein’s Model Neuron with Application to cells of the Dorsal 
Spinocerebellar Tract”, Brain Research, Vol. 116, p. 323-328, 1976. 

[27] Stein, R. B. “A Theoretical Analysis of Neuronal Variability”, Biophysical Journal, Vol. 5, No. 2, pp. 173-194, 



Information Processing in GLIF Neuron Model with Noisy Conductance 

 

 113 

1965. 

[28] Stein, R. B. “Some Models of Neuronal Variability”, Biophysical Journal, Vol. 7, pp. 37-68, 1967. 

[29] Wilbur, W. J. and Rinzel, J. “An Analysis of Stein’s Model for Stochastic Neuron Excitation”, Biological 
Cybernetics, Vol. 45, pp. 107-114, 1982. 

Author’sBiography 

 

 
Mr. VDS Baghela received his graduation degree in Statistics from BHU in 
1999 & completed MCA degree from AAIDU, Allahabad in 2004. He obtained 
M.Tech (CSE) degree from AKTU, Lucknow in 2010. He is pursuing Ph.D 
(CSE) under the supervision of Dr. S. K. Bharti. Mr. Baghela has served many 
engineering colleges of NCR as HoD& Dean. At present he is working as a 
Chief Operating Officer (COO) in EMVIDYA EDUCATION INDIA PVT. 
LTD., Delhi. 

 

 

Dr. Sunil Kumar Bhartireceives Master’s degree (Master of Computer 
Application) and Ph.D from School of Computer and Systems Sciences, 
Jawaharlal Nehru  University, New Delhi, India. His primary research area are in 
Modeling and Simulation, Computational (Neuroscience), image processing and 
computer vision. He has published various research papers (in reputed journals, 
international and national conferences. 

 

 
Saket Kumar Choudhary obtained his master degrees in Mathematics from the 
University of Allahabad, Allahabad, India in 2005, Master of Computer 
Application (MCA) from UPTU, Lucknow, India in 2010, Master of Technology 
(M.Tech) from Jawaharlal Nehru University, New Delhi, India in 2014. He is Ph.D 
(Computer Science and Technology) School of Computer and Systems Sciences, 
Jawaharlal Nehru University, New Delhi, India. Currently, he is working as an assistant 
professor in MRIIRS, Faridabad. His research interest includes mathematical modeling 
and simulation, dynamical systems, computational neuroscience: modeling of single and 
coupled neurons, computer vision, digital image processing, machine learning and 
artificial intelligence. 

 

How to Cite 
Baghela1, Vishwadeepak Singh, Bharti, Sunil Kumar and Choudhary , Saket Kumar, “Information Processing in GLIF Neuron Model 
with Noisy Conductance”,International Journal of Machine Learning and Networked Collaborative Engineering, Vol. 03 No. 2, 2019, 
pp.102-113. doi : https://doi.org/10.30991/IJMLNCE.2019v03i02.004. 
 

 


